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Abstract: Plant stress phenotyping consists of identification, classification, 
quantification, and prediction (ICQP) in crop stress. There are several approaches 
to plant stress identification. However, most of these approaches are based on the 
use of expert employees or invasive techniques. In general, expert employees 
have a good performance on different plants, but this alternative requires 
sufficient staff in order to guarantee quality crops. On the other hand, invasive 
techniques need the dismemberment of the leaves. To address this problem, an 
alternative is to process an image seeking to interpret areas of the images where 
the plant geometry may be observed, thus removing the qualified labor 
dependency or the crop dismemberment, but adding the challenge of having to 
interpret images ambiguities correctly. Motivated by the latter, we propose a new 
CNN-Superpixel approach for plant stress phenotyping. This strategy combines 
the abstraction power of deep learning and the information that provides the plant 
geometry. For that, our methodology has three steps. First, the plant recognition 
step provides the segmentation, location, and delimitation of the crop. Second, 
we propose a leaf detection analysis to classify and locate the boundaries between 
the different leaves. Finally, we use a depth sensor and the pinhole camera model 
to extract a 3D reconstruction. 

Keywords: Plant geometry understanding, plant stress phenotyping, CNN, 
superpixel, deep learning. 

1 Introduction 

Phenotype is the observable characteristics or traits of an organism that are produced 
by the interaction of the genotype (the genetic constitution of an organism) and the 
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environment 1 . Understanding these processes that span plant’s lifetime in a 
permanently changing environment is essential for the advancement of basic plant 
science [22]. Plant phenotyping is an important tool to address and understand plant 
environment interaction and its translation into application in crop management 
practices [27]. Abiotic stress includes factors such as drought, flood, salinity, radiation, 
high and low temperatures, among others. 

Meanwhile, in biotic stress, pathogens such as bacteria, fungi, yeasts, worms 
(nematodes) are considered. Current approaches for accurate classification of biotic and 
abiotic stresses in crop research and production are predominantly visual and require 
specialized training. However, these techniques are subject to subjectivity and the 
experience of the people who perform them. In addition, the availability of visual 
signals allows the identification of types of stress, but these visual signals do not 
coincide with the symptoms determined by experts [8]. Recently, high-throughput 
stress phenotyping techniques have been introduced that rely primarily on remote 
sensing or imaging. 

They are able to directly measure morphological traits, but measure physiological 
parameters mainly indirectly. Plant stress phenotyping is divided into four broad 
categories, the so-called ICQP paradigm, the acronym represents Identification, 
Classification, Quantification and Prediction. These four categories naturally fall into a 
continuum of feature extraction where increasingly more information is inferred from 
a given image [25]. 

Depending on the data acquisition devices, Plant Stress Phenotyping can be carried 
out in two ways: Aerial and Ground Based Sensing. The rapid development of image-
based phenotyping methods based on ground-operating devices or Unmanned Aerial 
Vehicles (UAV) has increased our ability to evaluate traits of interestfor crop breeding 
in the field [10]. 

Studies on plant stress include those on drought stress [4], heat stress [26], salt stress 
[14], nutrient deficiency [18] and and biotic stress [8]. 

Conventional plant stress identification and classification have invariably relied on 
human experts identifying visual symptoms as a means of categorization [9]. According 
to Naik et al. [17], current methods for phenotypically measuring are completely visual 
and labor-intensive. 

Naik and his collaborators reported that visual scoring is the simplest, subjective 
measurement that requires relatively less labor. However, it has reduced accuracy if the 
evaluation is made in diverse environments and by different raters [24]. Today, 
determination of crop stress factors using visible symptoms is still often a manual and 
complex task predominantly carried out by trained and experienced individuals, such 
as agronomists, crop scientists and plant pathologists [12]. 

The manual process is laborious, time-consuming and not always reproducible due 
to the inherently subjective nature of manual ratings, experience and interpretation [8]. 
It should be noted that the experience over the years is an invaluable resource. Thus, 
human experts can incorporate their knowledge into automated processes to improve 
the efficiency of these types of systems. 

In the last decades, several sensors and computer vision tools have been developed 
and became pivotal for quantifying plant traits with increasing throughput and accuracy 

                                                           
1 https://www.merriam-webster.com/dictionary/phenotype 
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[22]. Computer vision is a non-contact and non-destructive sensing technology that 
enables multi-dimensional sensing capabilities [6]. 

This technology can be used to extract information from a targeted object including 
morphological (size, shape, texture), spectral (colour, temperature, moisture), and 
temporal data (growth rate, development,dynamic change of spectral and 
morphological states) [11]. For commercial production systems, it is more 
advantageous to develop a real-time plant canopy health, growth and quality monitoring 
system with multi-sensor platforms. 

This can be achieved by a sensing system equipped with a multisensor platform 
moving over the canopy and ultimately using plants as ‘sensors’ to communicate their 
true status and needs [11]. 

Unlike conventional methods, optical imaging is advanced to measure changes 
caused by abiotic or biotic stressors in the plant physiology rapidly and without contact. 
In general, the common imaging technologies have been employed for detecting the 
crop stress, including digital, fluorescence, thermography, LIght Detection and 
Ranging(LIDAR), multispectral and hyperspectral imaging techniques [7]. 

Remote sensing phenotyping methods are non-destructive and non-invasive 
approaches [23], based mostly on the information provided by visible/near-infrared 
radiation reflected (or transmitted) and far-infrared(thermal) radiation emitted by the 
crop. Remote sensing techniques maybe deployed in situ screening for a wide range of 
breeding objectives,including yield potential, adaptation to abiotic (water stress, 
extreme temperatures, salinity) and biotic (susceptibility to pests and diseases) limiting 
conditions, and even quality traits [1]. 

Another way to measure the state of health or stress of a plant is by using laboratory 
techniques such as Kjeldahl method [3], a method developed for determining the 
nitrogen contents in organic and inorganic objects. 

For example, this method was applied in [28] to measure the total nitrogen content 
in samples of rice plants. Kjeldahl method is the most accurate and also the most time-
consuming method [19]. Also, it is invasive method since its use implies the destruction 
of the samples. However, it is useful in investigations where a baseline is required. 
Thus, it is possible to measure the efficiency of a non-invasive method such as remote-
sensing technology.In recent work, there is significant progress in crop stress diagnosis 

 

Fig. 1. Block diagram of the proposed methodology. 
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using machine learning [2]. This was achieved via learning algorithms that learn the 
relationship between visual appearance and plant stress phenotyping. 

Unlike the other trends (using expert employees or invasive techniques), this 
approach analyzes the plant without qualified labor dependency or the crop 
dismemberment, but adding the challenge of having to interpret images 
ambiguities correctly. 

Water stress is one of the main causes of death in plants, it occurs in plants in 
response to a low water environment, where the transpiration rate exceeds the intake of 
water. The problem of identifying stress in plants has been extensively studied. 
However, the studies carried out use two-dimensional information to classify the state 
of a plant, posing the problem of having to extract additional information, with a range 
of possibilities to obtain better stress analysis results. Other works carry out stress 
analysis with three-dimensional models for the extraction of the plant, but use rotating 
tables or a set of images of different poses for its reconstruction. 

To address this problem, the contribution of our work is a methodology for the 
extraction of a 3D model from a single image, this strategy combines the power of 
abstraction of deep learning and the information provided by the geometry of the plant. 
For this, we consider 2D and 3D information to predict the effect of water stress on 
growth caused by deficit of water and nutrients. Section 2 presents the proposed 
methodology carried out for the extraction of the 3D model and the experiments carried 
out, in section 3 presents the results for the evaluation of the proposed method. Finally, 
the results are discussed in section 4. 

2 Proposed Methodology 

Our methodology has three steps. First, the plant recognition step provides the 
segmentation, location, and delimitation of the crop. Second, we propose a leaf 
detection analysis to classify and locate the boundaries between the different leaves. 
Finally, we use a depth sensor and the pinhole camera model to extract the 3D pose. 
The schematic representation of the proposal is shown in Figure 1. 

2.1 Input Image 

We denote the RGB input image as 𝐼௣. We divide the image 𝐼௣ into a grid Θ. The grid 
Θ consists of sections Θ௪ , where 𝑤  denotes the 𝑤-th section in Θ, and each Θ௪ 

Fig. 2. (a) RGB image; (b) Semantic image. 
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section has a patch 𝜗ఝ,ఠ. A patch 𝜗ఝ,ఠ is a finite set of pixels 𝜗ఝ,ఠ = {𝑥ଵ, . . . , 𝑥௨}, 
𝜗ఝ,ఠ ∈ Θ, where 𝜑 and 𝜔 are the abscissa and ordinate from the Θ grid, respectively. 
Pixel 𝜌ఝ,ఠ is a pixel within the patch 𝜗ఝ,ఠ. 

2.2 Plant Recognition 

We use a CNN architecture to segment the pixels with a semantic of crop elements. 
This CNN learns two labels on crops (plant 𝜐ଵ and no-plant 𝜐ଶ). Although the no-plant 
label does not correspond to a plant element; we use this label since we need to remove 
it for the next steps. 

2.2.1 Training Set 

In the training set of semantic segmentation, we use the "Eschikon Plant Stress 
Phenotyping Dataset" [13]. This dataset has spatiotemporal-spectral data pertaining to 
sugarbeet crop growth under no, drought, fertilizer, and weed stress conditions over 
two months. To obtain the training set, we divide the images of the datasets with labels 
(plant 𝜐ଵ  and no-plant 𝜐ଶ) in RGB images of 32×32 pixels. For example, we can 
obtain 630 small sections (32×32 pixels) using an image (1920×1080 pixels). 

2.2.2 CNN for Semantic Segmentation 

The input of the CNN is an RGB section Φ௜ with a size of 32×32 pixels. In this case, 
we train the YOLOv4 network to learn two labels of crops (plant 𝜐ଵ and no-plant 𝜐ଶ). 
Also, our program uses a sliding window with a sweep of one pixel [20]. For that, this 
program analyzes RGB sections of 32×32 pixels. The CNN paints the central pixel 
𝜌ఝ,ఠ of the analyzed RGB section (32×32 pixels). For that, the CNN paints the central 
pixel 𝜌ఝ,ఠ of the analyzed RGB section 𝜗ఝ,ఠ with green color if it has a plant label 
𝜐ଵ (See Figure 2.6). On the other hand, the CNN paints the central pixel 𝜌ఝ,ఠ of the 
analyzed RGB section 𝜗ఝ,ఠ with black color if it has a no-plant label 𝜐ଶ. 

2.3 Superpixel Image 

We denote the superpixel image as 𝐼௦. For the superpixel image 𝐼௦, we use the SLIC 
superpixel approach [19]. The purpose was to classify and locate the boundaries 
between the different sheets, this algorithm grouped pixels based on their similarity in 
color and proximity in the image plane. Where 𝜓௜  denotes the 𝑖୲୦ superpixel in an 
image 𝐼௦. Given an RGB image, it is first converted to the LAB color space to group 
pixels based on their color similarity and proximity in the image plane, improving 
discrimination between foreground and background sheets. 

This algorithm takes as input a desired number of super pixels K of approximately 
the same size that is used to segment the input image with super pixels. 

For the superpixel approach, we use the following parameters: desired number of 
superpixels = 999, number of pixel-level iterations = 9, and shape smoothing term = 5. 
The value of K depends on the type of images being worked on, considering the number 
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of objects that exist in the image, a high number of superpixels is used, in this way the 
algorithm allows to better locate the edges of the sheets. 

The assignment and update steps are repeated until the error converges [5], but we 
found that 9 iterations are sufficient for the images and using K = 999, greater 
visualization of details is highlighted. 

2.4 Leaf Detection 

We use the Hough transform for the leaf detection step. We implement Hough 
transform to find circles in an image. For that, the Eq. 1 provides the mathematical 
representation of the circle. Where (𝑎, 𝑏) is the center of the circle, and 𝑟 is the radius 
in a fixed point (𝑥, 𝑦 ). In this case, the Hough transform locates circles into the 
superpixel edge of our semantic segmentation. Finally, the detected circles are the 
leaves of the plant: 

(𝑥 − 𝑎)ଶ + (𝑦 − 𝑏)ଶ = 𝑟ଶ. (1) 

2.5 Depth Image 

Nowadays, depth-sensing technologies are widely used to scan environments or 
simplify challenging tasks such as object detection, pose estimation, visual tracking, 
among others. In this work, we use a Kinect sensor to obtain the plant depth 
information. For that, we denoted the depth image as 𝐷ఌ . For the Kinect, we use the 
following parameters: image resolution= 640×480, frames per second = 12, and 
maximum depth = 4 meters. 

2.6 3D Model Analysis 

We use the basic pinhole model to extract the 3D model. This model considers the 
projection of a point 𝑃(𝑋, 𝑌, 𝑍) in space to a point 𝑝(𝑥, 𝑦) in the image plane. The 
relative size of an object in the image depends on the image plane distance 𝑍 and the 
focal length 𝑓 . The focal length 𝑓  is the distance between the camera center 𝐶௢ 
(camera lens center) to the image plane. The optical center or principal point 𝑂௢ is the 
origin of coordinates in the image plane, but in practice, it may not be. By similar 

Table 1. Confusion matrix dataset strawberry. 

True label 
 

Predicted label 

 Plant No-plant 

Plant  
45,845 

 
4,155 

No-plant  
2,522 

 
47,478 
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triangles, one quickly computes that the point 𝑃(𝑋, 𝑌, 𝑍)  is mapped to the point 
𝑝(𝑓𝑋/𝑍, 𝑓𝑌/𝑍, 𝑓) on the image plane. 

We use the pinhole model with the image plane information and the depth of the 
sensor to compute the 3D recovery in crops. In our extraction, we convert the 
information in meters. For that, we divided the scale factor 𝑘 with the maximum RGB 
value (255) and multiplied by a depth 𝑧 (Subsubsection 2.5). The scale factor 𝑘 is the 
maximum depth of the Kinect sensor (Subsubsection 2.5). For example, considering a 
maximum depth 𝑘 of 4 meters and a depth estimation 𝑧 of 128 in grayscale, 𝑍 is 
approximately 2 meters. The Eq. 2-4 compute the coordinates (𝑋, 𝑌, 𝑍) of a point in 
the space: 

𝑍 =
𝑘 ⋅ 𝑧

255
, 

(2) 

𝑋 =
𝑥 ⋅ 𝑍

𝑓
, 

(3) 

𝑌 =
𝑦 ⋅ 𝑍

𝑓
. 

(4) 

Finally, using the 3D plant model, we calculate the 3D centroid of the detected leaves 
(Subsubsection 2.4). This centroid provides a 3D compact representation of the leaf. For that, 
we use a simplification of the intensity centroid. This simplification of intensity centroid 
obtains the central point by 3D leaf extracted. Defining the moments as: 

𝑚௣,௤,௚
௝

= ෍

௪

௑,௒,௓

𝑋௣𝑌௤𝑍௚, 
(5) 

where 𝑗 denotes the 𝑗୲୦ 3D leaf extracted, and 𝑤 is the number of pixel projections 
by leaf. On the other hand, (𝑝, 𝑞, 𝑔) are the orders of the moment 𝑚௣,௤,௚

௝  (we use an 
order of 0 or 1). Finally, we determined the intensity centroid as: 

𝐶௝ = ൭
𝑚ଵ,଴,଴

௝

𝑚଴,଴,଴
௝

,
𝑚଴,ଵ,଴

௝

𝑚଴,଴,଴
௝

,
𝑚଴,଴,ଵ

௝

𝑚଴,଴,଴
௝

൱. 
(6) 

2.7 Crop Irrigation and Fertigation 

The experiment and acclimatization of the plants was carried out in a prototype built 
with a drip irrigation system with average conditions of temperature of 20 ° C and 
relative humidity of 60%. The prototype automatically controls 4 12v water pumps with 
a power of 19 watts and a current of 1A, and 2 incandescent lamps of 150 watts through 
a mobile application. The lamps were turned on daily from 6:00 a.m. to 6:00 p.m. and 
the pumps were activated at 8:00 p.m. Twelve strawberry plants organized in four 
groups called A, B, C and D, each with 3 plants, were placed in the prototype. Groups 
A and B were used to simulate stress conditions due to lack of water, while C and D 
were used to simulate stress conditions due to lack of nutrients. Group A was watered 
with a dose of 250 ml of water and group B with 150 ml of water every 2 days. 
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The plants of group C were watered with 250 ml of water and a 17% nutrient mixture 
(nitrogen, phosphorus and potassium) and the plants of group D were watered only with 
250 ml of water. 

In the works related to water stress in plants, the observation period of the 
experiments is concluded when the plant shows symptoms of wilting causing 
discoloration or dryness in the leaves, in this way the loss of the studied crop is avoided 
[15]. Therefore, our observation period for both experiments was 15 days, since in later 
days the plants showed wilting.  

To collect the images in color (RGB) and depth, a Kinect sensor placed at a distance 
of 90 cm above the foliage of the plants was used. The capture of images was carried 
out during the 15 days at 1:00 p.m. due to the lighting conditions.  

A daily image was taken of a total of 12 plants, this because the plant's reaction to 
stress took at least one day, in this way 180 images were obtained with a resolution of 
640x480 pixels. 

Table 1. Semantic segmentation evaluation. 

   N. images Dataset sugarbeet Dataset strawberry 

    Precision   Recall   F1-score   Precision   Recall   F1-score  

 15,000   0.75   0.78   0.76   0.80   0.85   0.82  

 20,000   0.78   0.80   0.78   0.85   0.91   0.87  

 25,000   0.83   0.85   0.83   0.90   0.93   0.91  

 30,000   0.85   0.90   0.87   0.91   0.93   0.91  

 40,000   0.88   0.93   0.90   0.91   0.94   0.92  

 50,000   0.91   0.94   0.92   0.93   0.95   0.93  

       

  

Fig. 3. (a) Water stress grid ; (b) Nutrient stress grid. 

Table 2. 3D model evaluation. 

  RMS(x)   RMS(y)   RMS(z)   Average  
 0.013416   0.029814   0.007843   0.03697  
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3 Results 

The problem was addressed as a binary classification problem (plant and no-plant 
classes), the positive class was plant. Binary classifier predicts the instances of the test 
set as positive or negative and produces four outcomes: True Positive (TP), True 
Negative (TN), False Negative (FN) and False Positive (FP). Table 1 shows the results 
obtained in each prediction made by CNN training with 50,000 sections of 32x32 pixels 
in each class. It is observed that the network correctly predicted 45,845 sections, 92% 
of the total of the plant class, as parts that corresponded to the leaf and 47,478 sections, 
95% of the total of the non-plant class, were correctly detected. 

We use two different datasets to evaluate semantic segmentation ("Eschikon Plant 
Stress Phenotyping" dataset [13] and a proposed dataset). The proposed dataset was 
obtained from strawberry plants with 180 images with a resolution of 640x480 pixels. 
Table 2 shows the result of training the network with different amounts of images. 

In it, the metrics are compared according to the recognition and segmentation 
obtained by CNN in the image sets, obtaining better results with ours. Experiments with 
50,000 images showed the highest segmentation and detection precision in the leaves 
of the plant. 

Figure 3 two different graphs are observed that show the behavior of the groups of 
plants from the applied irrigation, these heights were obtained from the 3D model. 
Figure 3 a) shows the heights of the plants watered with water in 2 different doses (250 
ml and 150 ml) are shown. 

The height of the leaves is measured relative to the ground. The better the plant is 
watered, the more the height of the leaves increases. This can be observed in the group 
that was watered with the 250 ml dose, the height remains constant or increases up to 
2 centimeters, but its height never decreases. 

Figure 3 b) shows a comparison of heights between a group of plants irrigated with 
nutrients and another group irrigated only with water, both groups with 250 ml. 

It is observed that the height increases as a function of the soil as the days go by 
when a plant is watered with enough nutrients that help the plant to grow. By irrigating 
the plants only with water, they maintain their normal development, however the height 
of their leaves is maintained or even decreased. 

The mean square error (RMS) determines how much the actual data differs from the 
predictions made by a model. Table 3 shows the RMS obtained by comparing the 
centroids (X, Y, Z) of the ground truth with respect to the centroids (X, Y, Z) of 
the CNN. 

4 Conclusions 

In this work, we have introduced a new CNN-Superpixel approach for 3D plant 
geometry understanding. Our strategy was to divide and simplify the 3D plant 
extraction process. 

This strategy combines the abstraction power of deep learning and the information 
that provides crop geometry. For that, our methodology has three steps. First, the plant 
recognition step provides the segmentation, location, and delimitation of the crop. 
Second, we propose a leaf detection analysis to classify and locate the boundaries 
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between the different leaves. Third, we use a depth sensor and the pinhole camera 
model to extract a 3D reconstruction. 

The quantitative experiments were conformed of the plant recognition (semantic 
segmentation) and its 3D extraction. In the recognition evaluation, we used two datasets 
that provide different crops ("Eschikon Plant Stress Phenotyping" dataset [?] and a 
proposed dataset). For that, we analyzed two labels of crops (plant and no-plant). 

For example, our plant segmentation had an average 𝑟𝑒𝑐𝑎𝑙𝑙  of 0.945, i.e., 
considering the ground-truth, we recognized 94.5% . On the other hand, the plant 
segmentation had an average 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  of 0.92, i.e., considering the semantic 
segmentation, we segmented 92.0% correctly. The segmentation is fundamental since 
the plant recognition is proportional to the precision of 3D extraction on the (X,Y) axis 
of the 3D model. 

Finally, for the 3D plant extraction evaluation, we use our proposed dataset. We used 
the RMS error for the quantitative evaluation. 

The Mean Square Error (RMS) determines how much the actual data differs from 
the predictions made by a model. For that, we compared the centroids (𝑋, 𝑌, 𝑍) of each 
leaf in the 3D model of the ground truth with our centroids (𝑋, 𝑌, 𝑍). 

In this experiment, we have an average RMS error (𝑍) of 0.007843, i.e., an error of 
0.007 centimeters in 4 meters. On the other hand, considering the coordinates (𝑋, 𝑌, 𝑍) 
in the extraction, we had an average RMS (𝑋, 𝑌, 𝑍) of 0.03697. 
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